
FigUre 2 shows the calculated result for the quasisteady regime Tw = 150~ with ~e = 
1080 sec, [e = 4.921 W/m.deg, and co = 10" J/kg.deg. The value of thermal conductivity [e 
was determined by interpolation from Table i. 

Values of effective thermal conductivity in Table 2 were used to calculate the tempera- 
ture relation T(~) at the point b = 0.026 m for nonsteady regimes (Fig. 3). In determining 
[ei, we broke each of the nonsteady regimes Tw(~) down into three sections with respect to 
time. In each section, heating was assumed to be quasisteady. Accordingly, each section in 
Table 1 was calculated by interpolation of the thermal conductivities. 

Comparison of the results calculated by simplified model (1)-(3) and data from a numeri- 
cal experiment on a multilayered cylindrical shell showed that the error of the relation found 
here T(T) is within the permissible range. 

NOTATION 

Te, Duration of regime; le, effective thermal conductivity; T(x, t), temperature; x, run- 
ning coordinate; T, running time; c, specific heat; 0, density; d, thickness of plate; q, heat 
flux; Tw, temperature of heated wall. 
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GRID METHOD FOR CALCULATION OF FLOW AND HEAT EXCHANGE 

OF A VISCOUS INCOMPRESSIBLE LIQUID 

N. I. Nikitenko UDC 532.516:536.25 

An explicit difference method is described for calculation of the flow and heat 
exchange of an incompressible liquid, allowing calculations at quite large Rey- 
nolds numbers. 

The development of simple and effective numerical methods for modeling liquid flow and 
heat exchange processes at high Reynolds and Grashof numbers is of great importance in many 
fields of contemporary technology. Use of the algorithm presented in [i] by the present auth- 
or, involving a scaled explicit difference scheme, permits successful solution of the boundary- 
layer problem and natural convection of a gas [2]. 

The present study will offer a numerical method based on the scaled difference scheme for 
calculating flow and heat exchange of a viscous incompressible liquid over a wide range of 
Grashof and Reynolds numbers. 
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Fig. i. Relative longitudinal velocity profile U/Uo in channel section X/Y = i00 for 
various Reynolds numbers and relative transverse velocities ~' = v'/uo of liquid trans- 
port through permeable wall: i) Re = i02, ~' = 0.03; 2) i03 and 0.03; 3) i0 e and 0.003; 
4) i02 and 0. 

Fig. 2. Change in relative longitudinal velocity over channel length for various Re and 
relative distances y = y/Y from permeable wall: i) Re = I02, y = 0.5; 2) i03 and 0.5; 
3) lOa and 0.5; 4) i0" and 0.083; 5) i03 and 0.083; 6) I02 and 0.083. 

Fig. 3. Relative temperature profiles t/to in channel section x/Y = i00 for various 
Reynolds numbers: i) Re = i02; 2) i03~ 3) i0~; 4) I08. 

In many eases of flow and heat exchange study liquids can be considered incompressible. 
For the basic dependent variables in calculations of such processes one usually uses the 
flow function ~, the vorticity ~, and the temperature t. The components of the velocity 
vector are then determined by differentiating the flow function with respect to the coordin- 
ates, while the pressure can be found after calculating the fuctions ~, m, t by solving the 
corresponding Poisson-type equation [3]. We will write the flow and heat exchange equations 
in divergent form in the variables ~, ~, t 

0r ~_ aur ~ ovr Io2r a~r ~ ( at at ) 
= ~ + - -  ~ gY-~x gx , ( l )  a'~ ax oy \ ax~ av ~- I -~Y 

O=~ 02~ (2)  
- - "  ~ e = 0 ,  

Ox~ Oy~ 

at + out + or__ L ( a~t a~t i (3) 
a~ -52-x au = a -2~-x~ " + - - / ,  Oy~ 

u O~ v O~ Ou Ov (4) 
ax ay ay ax 

To r e a l i z e  s y s t e m  ( 1 ) - ( 4 )  n u m e r i c a l l y  we a p p r o x i m a t e  t h e  v o r t i c i t y  t r a n s f e r  Eq. (1)  and 
e n e r g y  Eq. (3)  w i t h  t h e  s c a l e d  d i f f e r e n c e  m e t h o d  o f  [ 1 ] ,  w h i c h  i s  w i t h i n  t h e  c l a s s  t h e  a d d i -  
t i v e  m e t h o d s  h a v i n g  n e t  a p p r o x i m a t i o n  [ 4 ] .  I n  a c c o r d a n c e  w i t h  t h i s  t e c h n i q u e  t h e  d i f f e r e n -  
t i a l  transfer equation is correlated to two difference equations, and the desired function is 
calculated at each time step in two approximations. The difference equation for the first 
approximation approximates an incomplete transfer equation, in which only convective terms 
and the time derivative are retained. The difference equation for determining the unknown 
function in the second approximation is constructed by approximating all terms of the origi- 
nal differential transfer equation. On the grid 

x i + z = x i - ~ h i ,  i = O ,  1 . . . .  , I; Ym+l=Ymq- hym, 

m ---- 0, 1 . . . . .  M; '~.+1 ---- ,T. ~L In, n = 0, 1 . . . . .  
(5) 

the difference equations which serve to determine approximate values ~ of the functions 
~(~n, xi, 9m), cp ~ co, t, and approximate Eqs. (i), (3) with an error O(In~-h~- ~hym)2 have the 
form 
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8~o + 8~ (uo) + 6~ (vo) : O, 

8,o + %, (u?~) + % (v~) = v (sxfi  + ~J) -- ~ (e~8,:t-  g,,~t), 

8,F+ ,~ (ut) + 8~ (vt) = o, 

(6) 

(7) 

(8) 

Here 

~ t  + ~x (u~) + ~ (vT) = a (%:$ + ~ ) ) .  (9) 

. + l  n 1 , - . + 1  

1[ ] 
hi+x ~ ' 

= o, -~, t, 7, uo, ~ ,  vo, v-d, ut, ~,ilvt, 

The derivatives along the y-coordinate and approximated in the same was as those along x. 

The necessary conditions for stability of the solution of difference Eqs. (6)-(9), which 
can be found by conditional specification of some unknown system functions [i, 2], appear as 

( u~',. .,r,. h-, 
l , ~ m i n  ---~i + hu----~- ] . 

The equation for the flow function, Eq. 

4 + hu,n (10) "TT-  , X = %  a. 

(2), which is elliptical, is solved at each time 

follows: 

step by the establishment method using a three-layer explicit difference scheme [5]. On a 
grid which differs from Eq. (5) in that the real time T n is replaced by the discrete variable 
Tk = kl0, k = 0, i, ... l~ = const, the difference equation which will find Eq. (2) in the 
layer k + i has the form 

where 7 is a positive constant: 8,~ k= (~21--~)/4 . Although this is a three-layer scheme 
its computer realization requires only two data blocks R and R,, containing (I + I)(M + i) 

.,,h+l elements each. At the beginning of the cycle for calculating the function Tim the data 
block R holds the function ~i' , while R, holds ~,~ . The values of ~,hm+i for the k + 1 
step are stored in R. After calculations for the step k + 1 are performed data are trans- 
ferred from R to R, and from R, to R. 

The condition for stability of difference Eq. (ii), which can be obtained by the Fourier 
integral method, imposes the following limitation on the ratio between the steps of the dif- 
ference grid: 

2 (hF ~ + -2 au'~) (12) 

By varying the parameter 7 any desired grid steps can be selected. However, results of 
numberical experiments show that minimum machine time expenditure for establishing the solu- 
tion to the flow function equation is achieved at a value y = 2-2.5, which corresponds to a 
5-6-fold increase in the time step as compared to the maximum for a conventional two-layer 
explicit difference scheme. We note that the step ~ is in fact an iteration parameter in 
the search for ~+* . The process of establishing the solution to Eq. (ii) is considered Tzm 

completed when the condition ----~ IS~i<A is satisfied, where A is a small positive num- 
~m 

bet. It is assumed here that ~n+l = ~k. For the initial approximation corresponding to the 
value k = 0~ we take ~k = ~n. The components of the velocity vector an+ ! and n+i are deter- 

lm u im  
mined from difference equations stemming from Eq. (4) 

,n+l ~ ~n+l. un+l ~ ..,+I 
~ m  = ~ y T ~ m  ~ im : - - u X ~ t m  �9 
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It should be noted that the replacement in Eq. (7) of the term 6z~ by the operator 
(I + 7o) ~ m - - y ~ 8 ~ i n m  -~ (7o~ 0) or the value ~ by ~m~n+t in the approximations 6xx ~ a n d  6yy~ al- 
lows a significant easing of the limitation on the time step ~n for relatively small spatial 
steps. 

We will now consider a calculation with the method described above of forced flow and 
heat exchange in the initial section of a channel 0 < x < X, one wall of which is permeable. 
The initial velocity and temperature distributions are taken homogeneous: 

u(o, x, y ) =  v(O, x, y ) =  o, t(o, x, ~ ) =  t. (13) 

In the initial channel section x = 0 

u(-~, o, y ) =  Uo(,, y), v('~, o, y ) =  o, t('~, o, y ) =  to('~, y). (14) 

On the right-hand permeable channel boundary y = 0 the following conditions are satisfied: 

u('~, x, O)= O, v('~, x, O)= v', 

~, Ot (% x, O) _ (~, _ ~v'co) [t (~, x, O) - -  t'd, 
OV (15) 

8 = 0  for v ' ~ O ,  e . :  1 for v ' > O .  

On the left-hand channel boundary 

u ( %  x, Y ) : v ( %  x, Y ) : O ,  X Ot(~' x, Y )  r  x, Y ) - - t m ] .  ( 1 6 )  
Oy 

The conditions at the output boundary x = X will be written with the assumption that near 
this boundary the flow is stabilized and its characteristics change quite slowly along the 
flow lines, i.e., 

OstP . ~ . 0 ,  ~ o = u ,  v, t, r s =  1, 2, . ,  ( 17 )  
Ox s 

�9 Aside from the basic uniqueness conditions presented above, for numerical realization of the 
mathematical model we use additional mass balance conditions 

Y X X y 

0 0 0 0 

The first, second, third, and fourth terms on the left of Eq. (i0) are the liquid flow rates 
through the boundaries x = 0, y = 0, y = Y, and x = X, respectively. 

The numerical solution of this problem is carried out in the following sequence, In the 
layer n = 0, corresponding to the initial moment ~ = 0, the values of the unknown grid func- 
tions u, v, ~, 9, t are defined by conditions (13) and Eq. (4): 

.% = v0 = ~0 = ,L = o, t ~ = t (19) 

We assume that the values of these functions for time layers i, 2, ..., n have already been 
found, and that values must be determined for layer n + i. Initially, using Eqs. (6), (8), 
we calculate preliminary values of the functions --n§ and 7.n+l w~m . m  at the internal grid points 
i = i, 2, ..., I -- i; m = i, 2, ..., M-- i. At the limiting grid points we take 

~ m + l [ b  =~m[, , 'b ,  ~ n + I ,  in = "Zm I b = imlb. (20) 
. . n+  1 ,,n+ 1 

Then we use Eqs. (7), (9) to calculate the final values of the functions wzm and ,ira in the 
n + i layer at internal grid points. The values of the functions i,+I at the limiting grid 

fm 
points are determined from the conditions: 

tn+i lm = ,~Ll--l,m--- l--2,m, m = 1, 2, . . . ,  M - - 1 ,  ( 2 1 )  o,~ = to(%~+1, Y,~), t n+l ,,,n+l tn+l 

~n+l ~n+I~ (~z '-e(v ' )"cg)  ' t  n+l~ io - -  t~), i = 1, 2, I - -  1 ( 2 2 )  - - - - ~ i , 1  - -  ~i ,O ] : -  " " " '  ' 
ho 

~, t tn+l  cn+l  '~ = - -  0~" t tn+!  t" ~ , M - - . i , M - - I )  t i m  - -  c), i = 1 ,  2 . . . . .  I - - 1 .  ( 2 3 )  
hy,m-1 
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The grid function ~,m is then calculated immediately. At the input section and on the side 
~+~ 

walls of the channel to find ~,~ in terms of the velocity functions specified on these boun- 
daries we use difference equations stemming from Eq. (4): 

O , m + l  = ~VOm -1- / /  I -I-  t~Om 1, 

~ n + l  h i  / ,n-I-I n.-}- 1 -~ 
i+ ,0 = + I  2 - -  ' ' t, vi .q-l ,O "q- ~:i,O 1~ 

t.-]-l,M ~ ~ ~ i-~l,M"q- i ,M].  

(24) 

With respect to simplicity, accuracy, and stability of the solution the following method of 
finding the function ~l at the output boundary of the flow can be recommended. In accord- 
ance with Eq. (17) on the boundary x = X we find the longitudinal velocity ~q+l in the first 
approximation 

~ §  n __ un 
m = i u I - - l , m  ;--2,m- (25) 

The second approximation is obtained with the relationship 

uTm +l = ~"+lu~m+l, (26) 

where the coefficient 13 n+x is determined from mass balance Eq. (18). The first, second, and 
third terms on the left side of Eq. (18) can be expressed, for example, in terms of the nor- 
mal components of the velocity vector on the boundaries x = 0, y = 0, and y = Y, using the 
trapezoid expression, while the fourth term is expressed in therms of the velocity -;m'm+l" The 
difference analog to the balance equation obtained in this manner is solved for the first un- 
known function 13 n+x The values of ~n+l �9 Im are found in terms of u~ +~ with relationships analog- 
ous to Eq. (24). 

l h n + l  
The boundary values of the flow function on the layer n + 1 are used to determine ~m 

with Eq. (ii) at internal grid points, after which .a+1 and ,+l oim are determined with Eq (14) U~m �9 �9 

Determination of the unknown function on the layer n + i is completed by calculating the 
vorticity ~ at the boundary grid points with expressions obtained assuming the smoothness of 
the functions ~: 

~ n + l  ~ U . + I  2 - n + l  . , n + l  . + I ~  

onq-I ~:.  n+~ 2 ,.,..+1 .,..+~ 
Im = uilUlm .3f_ ~ [Wl--1 ,ra ~ Wlra -- Vim h l _  ! ), 

hl-1 

2 t.,..+l .,.n+~ 
~7 +~ = -- 8,Vh+'+ ~ t~'l -- W0 -- U~o+'h~0), 

/tu0 

O.)~M4. ~ o..n-.I- 1 . nq-1 
= ~ml,M__ I -- tui,M__ 2. 

(27) 

For natural convection problems the algorithm simplifies somewhat, since in this case 
for the boundary grid points v = u = ~ = 0. The computation time T s on a BESM-4M computer 
for one time step is approximately Ts = 0.005D, where D is the number of nodes in the grid. 

Figures 1-3 show some results of velocity and temperature field calculations in a slot 
channel at various Reynolds numbers Re = uoY/9 on the basis of Eqs. (6)-(27). 

The relative liquid velocity through the permeable wall v'/uo = 0.003; the Prandtl num- 
ber Pr = a/9 = i; mass forces are absent, i.e., gx = gy = O~ the velocity Uo and temperature 
to in the input section are constant. The relative channel length X/Y was varied from i to 
200. According to Fig. I, an increase in Re causes the velocity profile to become more filled. 
At larger Re this profile takes on the form characteristic of a turbulent flow regime in chan- 
nels with both permeable and impermeable walls�9 It is evident from Fig. 2 that with increase 
in Reynolds number nonuniformity in the change in velocity profile over channel length near 
the input section increases. As follows from Fig. 3, for identical liquid velocities v'/uo 
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through the permeable wall the temperature of the latter decreases with increase in Re, and 
at sufficiently high Re the temperature of the wall and the liquid traveling toward it co- 
incide. 

The results of the numerical experiments indicate the effectiveness of the difference 
method described over a wide range of Reynolds and Grashof numbers. 

NOTATION 

x, y, Spatial coordinates; T, time; u, v, projections of velocity vector on x and y axes; 
~, flow function; e, vorticity; t, temperature; gx, gy, projections of acceleration created 
by external mass forces along x and y axes; 8, temperature expansion coefficient; ~, ~, e, a, 
coefficients of kinematic viscosity, thermal conductivity, heat liberation, and thermal dif- 
fusivity; p, c, density and specific heat of liquid; tm, temperature of external medium sur- 
rounding channel wall. 
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A NUMERICAL METHOD OF CALCULATING THE BOUNDARY OF 

STABILITY OF THERMALLY INDUCED ACOUSTIC OSCILLATIONS 

V. A. Sysoev, S. P. Gorbachev, 
and V. K. Matyushchenkov 

UDC 621.59:534.1:546.291 

We present the results of a theoretical and experimental study of the conditions 
under which thermally induced acoustic oscillations arise in nonisothermal pipe- 
lines of variable cross section. 

In cryogenic nonisothermal pipelines, closed at the warm end and open at the cold end, 
thermally induced oscillations can arise, accompanied by a large heat flux in the low temper- 
ature zone. The stability boundary of such oscillations determines the conditions under which 
they arise and it depends on the wall temperature profiles of the pipeline and its cross sec- 
tion. For the case in which the temperature distribution and the pipeline cross section along 
its length are specified by single-step functions, a stability analysis was given in [1-4]. 
In [5] a numerical study was made of the influence of the temperature profile on the stabil- 
ity of the oscillations. In the persent paper we solve the very same problem, but for a pipe- 
line of variable cross section. 

The set of equations with respect to the amplitude for the oscillations of a gas with a 
frequency ~ in a nonisothermal tube of variable cross section has the form [4]. 

o (rg{x)U)+ Opo u = o ,  (1) loop+ r~x) ox " ax 
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